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What’s Wrong with MPI Everywhere 

•  We can run 1 MPI process per core (“flat MPI”) 
-  This works now on dual and quad-core machines 
-  It will work on 12-24 core machines like Hopper as well 

•  What are the problems? 
-  Latency: some copying required by semantics 
- Memory utilization: partitioning data for separate address space 

requires some replication 
•  How big is your per core subgrid?  At 10x10x10, over 1/2 of the points 

are surface points, probably replicated 
•  Weak scaling: success model for the “cluster era;” will not be for the many core 

era -- not enough memory per core 
- Heterogeneity: MPI per CUDA thread-block? 

•  Approaches 
- MPI + X, where X is OpenMP, Pthreads, OpenCL, TBB,… 
-  A PGAS language like UPC, Co-Array Fortran, Chapel or Titanium 
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PGAS Languages 

• Global address space: thread may directly read/write remote data  
•  Hides the distinction between shared/distributed memory 

• Partitioned: data is designated as local or global 
•  Does not hide this: critical for locality and scaling 
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•  UPC, CAF, Titanium: Static parallelism (1 thread per proc)  

•  Does not virtualize processors 
•  X10, Chapel and Fortress: PGAS,but not static (dynamic threads) 
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UPC Outline   

1.  Background 
2.  UPC Execution Model 
3.  Basic Memory Model: Shared vs. Private Scalars 
4.  Synchronization 
5.  Collectives 
6.  Data and Pointers 
7.  Dynamic Memory Management 
8.  Performance 
9.  Beyond UPC 
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Context 

• Most parallel programs are written using either: 
- Message passing with a SPMD model (MPI) 

•  Scales easily on clusters 
- Shared memory with threads in OpenMP, Threads 

•  In practice, requires shared memory hardware 
• Partitioned Global Address Space (PGAS) Languages take 

the best of both: 
- Global address space like threads (programmability) 
- SPMD parallelism like most MPI programs (performance) 
- Local/global distinction, i.e., layout matters (performance) 



History of UPC 
•  Initial Tech. Report from IDA in collaboration with LLNL 

and UCB in May 1999 (led by IDA). 
- UCB version based on Split-C 
- based on course project, motivated by Active Messages 
- IDA based on AC: 
-  think about “GUPS” or histogram; “just do it” programs 

• UPC Consortium controls the language spec:  
- UPC is a community effort, well beyond UCB/LBNL 

- ARSC, CSC, Cray Inc., Etnus, GMU, HP, IDA CCS, Intrepid, 
LBNL, LLNL, MTU, NSA, SGI, Sun, UCB, U. Florida, DOD 

- Design goals: high performance, expressive, consistent 
with C goals, …, portable 

• Several compilers, both commercial and open source: 
- Cray, HP, IBM, Berkeley, gcc-upc (Intrepid) 
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UPC Execution 
Model"
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UPC Execution Model 

•  A number of threads working independently in a SPMD 
fashion 
-  Number of threads specified at compile-time or run-time; 

available as program variable THREADS 
-  MYTHREAD specifies thread index (0..THREADS-1) 
-  upc_barrier is a global synchronization: all wait 
-  There is a form of parallel loop that we will see later 

•  There are two compilation modes 
-  Static Threads mode: 

•  THREADS is specified at compile time by the user 
•  The program may use THREADS as a compile-time constant 

-  Dynamic threads mode: 
•  Compiled code may be run with varying numbers of threads 
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Hello World in UPC 

• Any legal C program is also a legal UPC program 
•  If you compile and run it as UPC with P threads, it will 

run P copies of the program. 
• Using this fact, plus the identifiers from the previous 

slides, we can parallel hello world: 

#include <upc.h>  /* needed for UPC extensions */ 
#include <stdio.h> 

main() { 
  printf("Thread %d of %d: hello UPC world\n",  
         MYTHREAD, THREADS); 
} 
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Example: Monte Carlo Pi Calculation 

• Estimate Pi by throwing darts at a unit square 
• Calculate percentage that fall in the unit circle 

- Area of square = r2 = 1 
- Area of circle quadrant = ¼ * π r2 = π/4  

• Randomly throw darts at x,y positions 
•  If x2 + y2 < 1, then point is inside circle 
• Compute ratio: 

- # points inside / # points total 
-  π = 4*ratio  

r =1 
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Each thread calls “hit” separately 

Initialize random in 
math library 

Each thread can use 
input arguments 

Each thread gets its own 
copy of these variables 

Pi in UPC  

• Independent estimates of pi: 
  main(int argc, char **argv) { 
    int i, hits, trials = 0; 
    double pi; 

    if (argc != 2)trials = 1000000; 
    else trials = atoi(argv[1]); 

    srand(MYTHREAD*17); 

    for (i=0; i < trials; i++) hits += hit(); 
    pi = 4.0*hits/trials; 
    printf("PI estimated to %f.", pi); 
  } 
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Helper Code for Pi in UPC 

• Required includes: 
    #include <stdio.h> 
    #include <math.h>  
    #include <upc.h>  

• Function to throw dart and calculate where it hits: 
  int hit(){ 
    int const rand_max = 0xFFFFFF; 
    double x = ((double) rand()) / RAND_MAX; 
    double y = ((double) rand()) / RAND_MAX; 
    if ((x*x + y*y) <= 1.0) { 
         return(1); 
    } else { 
         return(0); 
    } 
  } 
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Shared vs. Private 
Variables"
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Private vs. Shared Variables in UPC 

• Normal C variables and objects are allocated in the private 
memory space for each thread. 

• Shared variables are allocated only once, with thread 0 
     shared int ours;  // use sparingly: performance 
     int mine; 

• Shared variables may not have dynamic lifetime:  may not 
occur in a in a function definition, except as static.  Why? 

Shared 
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Pi in UPC: Shared Memory Style 

• Parallel computing of pi, but with a bug 
  shared int hits; 
  main(int argc, char **argv) { 
      int i, my_trials = 0; 
      int trials = atoi(argv[1]); 
      my_trials = (trials + THREADS - 1)/THREADS; 
      srand(MYTHREAD*17); 
      for (i=0; i < my_trials; i++)    
        hits += hit(); 
      upc_barrier; 
      if (MYTHREAD == 0) { 
        printf("PI estimated to %f.", 4.0*hits/trials); 
      } 
   } 

shared variable to 
record hits 

divide work up evenly 

accumulate hits 

What is the problem with this program? 
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Shared Arrays Are Cyclic By Default 

• Shared scalars always live in thread 0 
• Shared arrays are spread over the threads 
• Shared array elements are spread across the threads 

shared int x[THREADS]        /* 1 element per thread */ 
shared int y[3][THREADS] /* 3 elements per thread */ 
shared int z[3][3]               /* 2 or 3 elements per thread */ 

•  In the pictures below, assume THREADS = 4 
- Red elts have affinity to thread 0 

x 

y 

z 

As a 2D array, y is 
logically blocked 
by columns 

Think of linearized 
C array, then map 
in round-robin 

z is not 
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Pi in UPC: Shared Array Version 

• Alternative fix to the race condition  
• Have each thread update a separate counter: 

- But do it in a shared array 
- Have one thread compute sum 

shared int all_hits [THREADS]; 
main(int argc, char **argv) { 
  … declarations an initialization code omitted 
  for (i=0; i < my_trials; i++)  
    all_hits[MYTHREAD] += hit(); 
  upc_barrier; 
  if (MYTHREAD == 0) { 
    for (i=0; i < THREADS; i++) hits += all_hits[i]; 
    printf("PI estimated to %f.", 4.0*hits/trials); 
  } 
} 

all_hits is 
shared by all 
processors, 
just as hits was 

update element 
with local affinity 
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UPC 
Synchronization"
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UPC Global Synchronization 

•  UPC has two basic forms of barriers: 
-  Barrier: block until all other threads arrive  

 upc_barrier 
-  Split-phase barriers 
   upc_notify;  this thread is ready for barrier 
      do computation unrelated to barrier 
   upc_wait;      wait for others to be ready 

•  Optional labels allow for debugging 
#define MERGE_BARRIER 12 
if (MYTHREAD%2 == 0) { 
     ... 
     upc_barrier MERGE_BARRIER;   
} else { 
     ... 
     upc_barrier MERGE_BARRIER; 
} 
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Synchronization - Locks 

•  Locks in UPC are represented by an opaque type: 
upc_lock_t 

•  Locks must be allocated before use: 
upc_lock_t *upc_all_lock_alloc(void); 

   allocates 1 lock, pointer to all threads 
upc_lock_t *upc_global_lock_alloc(void); 

     allocates 1 lock, pointer to one thread 
•  To use a lock: 

void upc_lock(upc_lock_t *l) 
void upc_unlock(upc_lock_t *l) 

  use at start and end of critical region 
•  Locks can be freed when not in use 

void upc_lock_free(upc_lock_t *ptr); 
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Pi in UPC: Shared Memory Style 

• Parallel computing of pi, without the bug 
  shared int hits; 
  main(int argc, char **argv) { 
      int i, my_hits, my_trials = 0; 
  upc_lock_t *hit_lock = upc_all_lock_alloc(); 
      int trials = atoi(argv[1]); 
      my_trials = (trials + THREADS - 1)/THREADS; 
      srand(MYTHREAD*17); 
      for (i=0; i < my_trials; i++)  
         my_hits += hit(); 
      upc_lock(hit_lock); 
      hits += my_hits; 
      upc_unlock(hit_lock); 
      upc_barrier; 
      if (MYTHREAD == 0)  
        printf("PI: %f", 4.0*hits/trials); 
   } 

create a lock 

accumulate hits 
locally 

accumulate 
across threads 
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Recap: Private vs. Shared Variables in UPC 

• We saw several kinds of variables in the pi example 
- Private scalars (my_hits) 
- Shared scalars (hits) 
- Shared arrays (all_hits) 
- Shared locks (hit_lock) 

Shared 
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Private 
my_hits:  my_hits:  my_hits:  

Thread0   Thread1                                       Threadn 

all_hits[0]: 

hits:  

all_hits[n]: all_hits[1]: 

hit_lock:  

where: 
n=Threads-1 
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UPC Collectives"
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UPC Collectives in General 

•  The UPC collectives interface is in the language spec: 
- http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf 

•  It contains typical functions: 
- Data movement: broadcast, scatter, gather, … 
- Computational: reduce, prefix, … 

•  Interface has synchronization modes: 
- Avoid over-synchronizing (barrier before/after is simplest 

semantics, but may be unnecessary) 
- Data being collected may be read/written by any thread 

simultaneously 
•  Simple interface for collecting scalar values (int, double,…) 

- Berkeley UPC value-based collectives  
- Works with any compiler 
- http://upc.lbl.gov/docs/user/README-collectivev.txt 
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Pi in UPC: Data Parallel Style 

• The previous version of Pi works, but is not scalable: 
- On a large # of threads, the locked region will be a bottleneck 

• Use a reduction for better scalability 

  #include <bupc_collectivev.h> 
  // shared int hits; 
  main(int argc, char **argv) { 
      ... 
      for (i=0; i < my_trials; i++)  
         my_hits += hit(); 
      my_hits =         // type, input, thread, op 
         bupc_allv_reduce(int, my_hits, 0, UPC_ADD);  
      // upc_barrier; 
      if (MYTHREAD == 0)  
        printf("PI: %f", 4.0*my_hits/trials); 
   } 

 Berkeley collectives 
no shared variables 

barrier implied by collective 
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UPC (Value-Based) Collectives in General 

• General arguments: 
-  rootthread is the thread ID for the root (e.g., the source of a broadcast) 
- All 'value' arguments indicate an l-value (i.e., a variable or array element, not a literal 

or an arbitrary expression)  
- All 'TYPE' arguments should the scalar type of collective operation 
- upc_op_t is one of: UPC_ADD, UPC_MULT, UPC_AND, UPC_OR, UPC_XOR, 

UPC_LOGAND, UPC_LOGOR, UPC_MIN, UPC_MAX  
•  Computational Collectives 
- TYPE bupc_allv_reduce(TYPE, TYPE value, int rootthread, upc_op_t reductionop)  
- TYPE bupc_allv_reduce_all(TYPE, TYPE value, upc_op_t reductionop)  
- TYPE bupc_allv_prefix_reduce(TYPE, TYPE value, upc_op_t reductionop)   

• Data movement collectives 
- TYPE bupc_allv_broadcast(TYPE, TYPE value, int rootthread)  
- TYPE bupc_allv_scatter(TYPE, int rootthread, TYPE *rootsrcarray)  
- TYPE *bupc_allv_gather(TYPE, TYPE value, int rootthread, TYPE *rootdestarray)  

•  Gather a 'value' (which has type TYPE) from each thread to 'rootthread', and place them (in 
order by source thread) into the local array 'rootdestarray' on 'rootthread'.  

- TYPE *bupc_allv_gather_all(TYPE, TYPE value, TYPE *destarray)  
- TYPE bupc_allv_permute(TYPE, TYPE value, int tothreadid)  

•  Perform a permutation of 'value's across all threads. Each thread passes a value and a 
unique thread identifier to receive it - each thread returns the value it receives.  
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local 

shared 

Full UPC Collectives 
- Value-based collectives pass in and return scalar values  
- But sometimes you want to collect over arrays 
- When can a collective argument begin executing? 

•  Arguments with affinity to thread i are ready when thread i calls the 
function; results with affinity to thread i are ready when thread i returns. 

•  This is appealing but it is incorrect: In a broadcast, thread 1 does not 
know when thread 0 is ready. 

0 2 1 

dst dst dst 

src src src 

Slide source: Steve Seidel, MTU 
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UPC Collective: Sync Flags  

•  In full UPC Collectives, blocks of data may be collected 
•  A extra argument of each collective function is the sync mode of type 

upc_flag_t.  
•  Values of sync mode are formed by or-ing together a constant of the form 

UPC_IN_XSYNC and a constant of the form UPC_OUT_YSYNC, where X 
and Y may be NO, MY, or ALL. 

•  If sync_mode is (UPC IN_XSYNC | UPC OUT YSYNC), then if X is: 
-  NO the collective function may begin to read or write data when the first thread 

has entered the collective function call, 
- MY the collective function may begin to read or write only data which has 

affinity to threads that have entered the collective function call, and 
-  ALL the collective function may begin to read or write data only after all threads 

have entered the collective function call 
•  and if Y is 

-  NO the collective function may read and write data until the last thread has 
returned from the collective function call, 

- MY the collective function call may return in a thread only after all reads and 
writes of data with affinity to the thread are complete3, and 

-  ALL the collective function call may return only after all reads and writes of data 
are complete. 
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Work Distribution 
Using upc_forall 



2/7/11" Cray XE Training" 30"

Example: Vector Addition 

 /* vadd.c */ 
 #include <upc_relaxed.h> 
#define N 100*THREADS 

shared int v1[N], v2[N], sum[N]; 
void main() { 

 int i; 
 for(i=0; i<N; i++) 

   if (MYTHREAD == i%THREADS)
     sum[i]=v1[i]+v2[i]; 

} 

• Questions about parallel vector additions: "
• How to layout data (here it is cyclic)"
• Which processor does what (here it is “owner computes”)"

cyclic layout 

owner computes 
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•  The idiom in the previous slide is very common 
-  Loop over all; work on those owned by this proc 

•  UPC adds a special type of loop 
    upc_forall(init; test; loop; affinity) 
      statement; 

•  Programmer indicates the iterations are independent 
-  Undefined if there are dependencies across threads 

•  Affinity expression indicates which iterations to run on each thread.  
It may have one of two types: 
-  Integer: affinity%THREADS is MYTHREAD 
-  Pointer: upc_threadof(affinity) is MYTHREAD 

•  Syntactic sugar for loop on previous slide 
-  Some compilers may do better than this, e.g.,  

   for(i=MYTHREAD; i<N; i+=THREADS) 

-  Rather than having all threads iterate N times: 
      for(i=0; i<N; i++) if (MYTHREAD == i%THREADS) 

Work Sharing with upc_forall() 
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Vector Addition with upc_forall 

#define N 100*THREADS 

shared int v1[N], v2[N], sum[N]; 

void main() { 
 int i; 
 upc_forall(i=0; i<N; i++; i) 

                 sum[i]=v1[i]+v2[i]; 
} 

• The vadd example can be rewritten as follows 
• Equivalent code could use “&sum[i]” for affinity 
• The code would be correct but slow if the affinity 

expression were i+1 rather than i. 

The cyclic data 
distribution may 
perform poorly on 
some machines"
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Distributed Arrays 
in UPC"
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Blocked Layouts in UPC 

#define N 100*THREADS 
shared int [*] v1[N], v2[N], sum[N]; 

void main() { 
 int i; 
 upc_forall(i=0; i<N; i++; &sum[i])   

                 sum[i]=v1[i]+v2[i]; 
} 

•  If this code were doing nearest neighbor averaging (3pt stencil) the 
cyclic layout would be the worst possible layout. 

•  Instead, want a blocked layout 
•  Vector addition example can be rewritten as follows using a blocked 

layout 

blocked layout 
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Layouts in General 

• All non-array objects have affinity with thread zero. 
• Array layouts are controlled by layout specifiers: 

- Empty (cyclic layout) 
- [*] (blocked layout) 
- [0] or [] (indefinite layout, all on 1 thread) 
- [b] or [b1][b2]…[bn] = [b1*b2*…bn] (fixed block size) 

• The affinity of an array element is defined in terms of: 
- block size, a compile-time constant 
- and THREADS.   

• Element i has affinity with thread  
        (i / block_size) % THREADS 

•  In 2D and higher, linearize the elements as in a C 
representation, and then use above mapping 
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Pointers to Shared vs. Arrays 

#define N 100*THREADS 
shared int v1[N], v2[N], sum[N]; 
void main() { 

int i; 
shared int *p1, *p2; 

p1=v1; p2=v2; 
for (i=0; i<N; i++, p1++, p2++ )  

     if (i %THREADS= = MYTHREAD) 
  sum[i]= *p1 + *p2; 

} 

•  In the C tradition, array can be access through pointers"
• Here is the vector addition example using pointers"

v1 

p1 
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UPC Pointers  

Local Shared 
Private p1 p2 

Shared p3 p4 

Where does the pointer point? 

Where 
does the 
pointer 
reside? 

int *p1;        /* private pointer to local memory */ 
shared int *p2; /* private pointer to shared space */ 
int *shared p3; /* shared pointer to local memory */ 
shared int *shared p4; /* shared pointer to  
                           shared space */ 
Shared to local memory (p3) is not recommended. 
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UPC Pointers  

int *p1;        /* private pointer to local memory */ 
shared int *p2; /* private pointer to shared space */ 
int *shared p3; /* shared pointer to local memory */ 
shared int  *shared p4; /* shared pointer to   
                           shared space */ 

Shared 
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Private 
p1:  

Thread0   Thread1                                       Threadn 

p2:  

p1:  

p2:  

p1:  

p2:  

p3:  

p4:  

p3:  

p4:  

p3:  

p4:  

Pointers to shared often require more storage and are more costly to 
dereference; they may refer to local or remote memory. 
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Dynamic Memory Allocation in UPC 

• Dynamic memory allocation of shared memory is 
available in UPC 

• Functions can be collective or not 
- A collective function has to be called by every 

thread and will return the same value to all of them 
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Global Memory Allocation  
shared void *upc_global_alloc(size_t nblocks, 

size_t nbytes); 

   nblocks : number of blocks 
    nbytes : block size 

•  Non-collective: called by one thread  
•  The calling thread allocates a contiguous memory space in the 

shared space with the shape: 
    shared [nbytes] char[nblocks * nbytes] 

shared void *upc_all_alloc(size_t nblocks,   
size_t nbytes); 

•  The same result, but must be called by all threads together 
•  All the threads will get the same pointer  
void upc_free(shared void *ptr); 
•  Non-collective function; frees the dynamically allocated shared 

memory pointed to by ptr 
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Distributed Arrays Directory Style 

• Many UPC programs avoid the UPC style arrays in 
factor of directories of objects 

typedef shared [] double *sdblptr; 
shared sdblptr directory[THREADS]; 
directory[i]=upc_alloc(local_size*sizeof(double)); 

directory 

• These are also more general: 
• Multidimensional, unevenly distributed 
• Ghost regions around blocks 

physical and 
conceptual 
3D array 
layout 
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Performance of 
UPC"
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PGAS Languages have Performance Advantages 
Strategy for acceptance of a new language 
• Make it run faster than anything else 

Keys to high performance 
• Parallelism: 

- Scaling the number of processors 
• Maximize single node performance 

- Generate friendly code or use tuned libraries 
(BLAS, FFTW, etc.) 

• Avoid (unnecessary) communication cost 
- Latency, bandwidth, overhead 
- Berkeley UPC and Titanium use GASNet 

communication layer 
• Avoid unnecessary delays due to dependencies 

- Load balance; Pipeline algorithmic dependencies 
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One-Sided vs Two-Sided 

•  A one-sided put/get message can be handled directly by a network 
interface with RDMA support 
- Avoid interrupting the CPU or storing data from CPU (preposts) 

•  A two-sided messages needs to be matched with a receive to 
identify memory address to put data 
- Offloaded to Network Interface in networks like Quadrics 
- Need to download match tables to interface (from host) 
- Ordering requirements on messages can also hinder bandwidth 

address 

message id 

data payload 

data payload 

one-sided put message 

two-sided message 

network 
 interface 

memory 

host 
CPU 
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GASNet excels at mid-range sizes: important for overlap 

GASNet: Portability and High-Performance 
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Communication Strategies for 3D FFT 

chunk = all rows with same destination 

pencil = 1 row 

•  Three approaches: 
• Chunk:  

•  Wait for 2nd dim FFTs to finish 
•  Minimize # messages 

• Slab:  
•  Wait for chunk of rows destined for 1 

proc to finish 
•  Overlap with computation 

• Pencil:  
•  Send each row as it completes 
•  Maximize overlap and 
•  Match natural layout 

slab = all rows in a single plane with 
same destination 

Joint work with Chris Bell, Rajesh 
Nishtala, Dan Bonachea!



FFT Performance on BlueGene/P 

HPC Challenge Peak as of July 09 is 
~4.5 Tflops on 128k Cores 

•  PGAS implementations 
consistently outperform MPI 

•  Leveraging communication/
computation overlap yields 
best performance 

•  More collectives in flight 
and more communication 
leads to better 
performance 

•  At 32k cores, overlap 
algorithms yield 17% 
improvement in overall 
application time 

•  Numbers are getting close to 
HPC record  

•  Future work to try to beat 
the record 
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NAS FT Variants Performance Summary 

•  Slab is always best for MPI; small message cost too high 
•  Pencil is always best for UPC; more overlap 

Joint work with Chris Bell, 
Rajesh Nishtala, Dan Bonachea!

.5 Tflops 
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Case Study: LU Factorization 

•  Direct methods have complicated dependencies 
- Especially with pivoting (unpredictable communication) 
- Especially for sparse matrices (dependence graph with holes) 

•  LU Factorization in UPC 
- Use overlap ideas and multithreading to mask latency 
- Multithreaded: UPC threads + user threads + threaded BLAS 

•  Panel factorization: Including pivoting 
•  Update to a block of U 
•  Trailing submatrix updates 

•  Status: 
- Dense LU done: HPL-compliant  
- Sparse version underway 

Joint work with Parry Husbands!
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UPC HPL Performance 

•  Comparison to ScaLAPACK on an Altix, a 2 x 4 process grid 
- ScaLAPACK (block size 64) 25.25 GFlop/s (tried  several block sizes) 
- UPC LU (block size 256) - 33.60 GFlop/s, (block size 64) - 26.47 GFlop/s 

•  n = 32000 on a 4x4 process grid 
- ScaLAPACK - 43.34 GFlop/s (block size = 64)  
- UPC - 70.26 Gflop/s (block size = 200) 

X1 Linpack Performance
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• MPI HPL numbers 
from HPCC 
database 

• Large scaling:  
• 2.2 TFlops on 512p,  
• 4.4 TFlops on 1024p 
(Thunder) 

Joint work with Parry Husbands!



Application Work in PGAS 

• Network simulator in UPC (Steve Hofmeyr, LBNL) 
• Rea-space multigrid (RMG) quantum mechanics 

(Shirley Moore, UTK) 
•  Landscape analysis, i.e., “Contributing Area 

Estimation” in UPC (Brian Kazian, UCB) 
• GTS Shifter in CAF (Preissl, Wichmann, 

Long, Shalf, Ethier,  
Koniges, LBNL,  
Cray, PPPL)  
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Summary 

• UPC designed to be consistent with C 
- Some low level details, such as memory layout are 

exposed 
- Ability to use pointers and arrays interchangeably 

• Designed for high performance 
- Memory consistency explicit 
- Small implementation 

• Berkeley compiler (used for next homework) 
http://upc.lbl.gov 

•  Language specification and other documents 
http://upc.gwu.edu 



PGAS Languages for Manycore 

•  PGAS memory are a good fit to machines with explicitly managed 
memory (local store) 
- Global address space implemented as DMA reads/writes 
- New “vertical” partition of memory needed for on/off chip, e.g., 

upc_offchip_alloc  
- Non-blocking features of UPC put/get are useful 

•  SPMD execution model needs to be adapted to heterogeneity 
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